PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfnfreeint-P7

Theorem dfnfreeint-P7 969
Description: Necessary Condition for (i.e. "If" part of) df-nfree-D6.1 682 Derived From Natural Deduction Rules.

Only this direction is deducible with intuitionist logic.

Assertion
Ref Expression
dfnfreeint-P7 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)

Proof of Theorem dfnfreeint-P7
StepHypRef Expression
1 orcomm-P3.37 319 . . . 4 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑))
2 allnegex-P7 958 . . . . 5 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
32suborl-P3.43a.RC 347 . . . 4 ((∀𝑥 ¬ 𝜑 ∨ ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
41, 3bitrns-P3.33c.RC 303 . . 3 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
54rcp-NDBIEF0 240 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
6 imasorint-P4.32b 488 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) → (∃𝑥𝜑 → ∀𝑥𝜑))
7 dfnfreealtif-P7 964 . 2 ((∃𝑥𝜑 → ∀𝑥𝜑) → Ⅎ𝑥𝜑)
85, 6, 7dsyl-P3.25.RC 262 1 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) → Ⅎ𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-or 144  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-false-D2.5 158  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator