PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverim-P7

Theorem alloverim-P7 970
Description: '' Distributes Over ''.
Hypothesis
Ref Expression
alloverim-P7.1 (𝛾 → ∀𝑥(𝜑𝜓))
Assertion
Ref Expression
alloverim-P7 (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))

Proof of Theorem alloverim-P7
StepHypRef Expression
1 alloverim-P7.1 . 2 (𝛾 → ∀𝑥(𝜑𝜓))
2 axL4-P7 945 . 2 (∀𝑥(𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
31, 2syl-P3.24.RC 260 1 (𝛾 → (∀𝑥𝜑 → ∀𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  alloverim-P7.GENF  971  alloverim-P7r  1017  alloverim-P7r.RC  1018  alloverim-P7r.GENV  1020  dalloverim-P7  1022  dalloverimex-P7  1033
  Copyright terms: Public domain W3C validator