PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverim-P7

Theorem dalloverim-P7 1022
Description: Double '𝑥' Distribution Over ''.
Hypothesis
Ref Expression
dalloverim-P7.1 (𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
dalloverim-P7 (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))

Proof of Theorem dalloverim-P7
StepHypRef Expression
1 dalloverim-P7.1 . . . . 5 (𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))
21alloverim-P7 970 . . . 4 (𝛾 → (∀𝑥𝜑 → ∀𝑥(𝜓𝜒)))
32import-P3.34a.RC 306 . . 3 ((𝛾 ∧ ∀𝑥𝜑) → ∀𝑥(𝜓𝜒))
43alloverim-P7 970 . 2 ((𝛾 ∧ ∀𝑥𝜑) → (∀𝑥𝜓 → ∀𝑥𝜒))
54rcp-NDIMI2 224 1 (𝛾 → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dalloverim-P7.RC  1023  dalloverim-P7.CL  1024  dalloverim-P7.GENF  1025  dalloverim-P7.GENV  1026
  Copyright terms: Public domain W3C validator