PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverim-P7.CL

Theorem dalloverim-P7.CL 1024
Description: Closed Form of dalloverim-P7 1022.
Assertion
Ref Expression
dalloverim-P7.CL (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))

Proof of Theorem dalloverim-P7.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (∀𝑥(𝜑 → (𝜓𝜒)) → ∀𝑥(𝜑 → (𝜓𝜒)))
21dalloverim-P7 1022 1 (∀𝑥(𝜑 → (𝜓𝜒)) → (∀𝑥𝜑 → (∀𝑥𝜓 → ∀𝑥𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator