| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > import-P3.34a.RC | |||
| Description: Inference Form of import-P3.34a 305. † |
| Ref | Expression |
|---|---|
| import-P3.34a.RC.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| import-P3.34a.RC | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | import-P3.34a.RC.1 | . . . 4 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 → (𝜓 → 𝜒))) |
| 3 | 2 | import-P3.34a 305 | . 2 ⊢ (⊤ → ((𝜑 ∧ 𝜓) → 𝜒)) |
| 4 | 3 | ndtruee-P3.18 183 | 1 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: example-E3.1b 310 dalloverimex-P5 605 lemma-L6.07a-L1 770 lemma-L6.07a-L2 771 splitelof-P6-L1 777 psubsuccv-P6-L1 805 lemma-L7.02a-L1 943 axL4-P7 945 nfrgencl-P7 965 allic-P7 1007 dalloverim-P7 1022 dalloverimex-P7 1033 qimeqex-P7-L1 1054 |
| Copyright terms: Public domain | W3C validator |