PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  import-P3.34a.RC

Theorem import-P3.34a.RC 306
Description: Inference Form of import-P3.34a 305.
Hypothesis
Ref Expression
import-P3.34a.RC.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
import-P3.34a.RC ((𝜑𝜓) → 𝜒)

Proof of Theorem import-P3.34a.RC
StepHypRef Expression
1 import-P3.34a.RC.1 . . . 4 (𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑 → (𝜓𝜒)))
32import-P3.34a 305 . 2 (⊤ → ((𝜑𝜓) → 𝜒))
43ndtruee-P3.18 183 1 ((𝜑𝜓) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  example-E3.1b  310  dalloverimex-P5  605  lemma-L6.07a-L1  770  lemma-L6.07a-L2  771  splitelof-P6-L1  777  psubsuccv-P6-L1  805  lemma-L7.02a-L1  943  axL4-P7  945  nfrgencl-P7  965  allic-P7  1007  dalloverim-P7  1022  dalloverimex-P7  1033  qimeqex-P7-L1  1054
  Copyright terms: Public domain W3C validator