PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverimex-P5

Theorem dalloverimex-P5 605
Description: Alternate version of dalloverim-P5 590 that produces existential quantifiers.
Hypothesis
Ref Expression
dalloverimex-P5.1 (𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
dalloverimex-P5 (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))

Proof of Theorem dalloverimex-P5
StepHypRef Expression
1 dalloverimex-P5.1 . . . . 5 (𝛾 → ∀𝑥(𝜑 → (𝜓𝜒)))
21alloverim-P5 588 . . . 4 (𝛾 → (∀𝑥𝜑 → ∀𝑥(𝜓𝜒)))
32import-P3.34a.RC 306 . . 3 ((𝛾 ∧ ∀𝑥𝜑) → ∀𝑥(𝜓𝜒))
43alloverimex-P5 601 . 2 ((𝛾 ∧ ∀𝑥𝜑) → (∃𝑥𝜓 → ∃𝑥𝜒))
54rcp-NDIMI2 224 1 (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-and 132  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  dalloverimex-P5.RC  606
  Copyright terms: Public domain W3C validator