| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dalloverimex-P5 | |||
| Description: Alternate version of dalloverim-P5 590 that produces existential quantifiers. |
| Ref | Expression |
|---|---|
| dalloverimex-P5.1 | ⊢ (𝛾 → ∀𝑥(𝜑 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| dalloverimex-P5 | ⊢ (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dalloverimex-P5.1 | . . . . 5 ⊢ (𝛾 → ∀𝑥(𝜑 → (𝜓 → 𝜒))) | |
| 2 | 1 | alloverim-P5 588 | . . . 4 ⊢ (𝛾 → (∀𝑥𝜑 → ∀𝑥(𝜓 → 𝜒))) |
| 3 | 2 | import-P3.34a.RC 306 | . . 3 ⊢ ((𝛾 ∧ ∀𝑥𝜑) → ∀𝑥(𝜓 → 𝜒)) |
| 4 | 3 | alloverimex-P5 601 | . 2 ⊢ ((𝛾 ∧ ∀𝑥𝜑) → (∃𝑥𝜓 → ∃𝑥𝜒)) |
| 5 | 4 | rcp-NDIMI2 224 | 1 ⊢ (𝛾 → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∧ wff-and 132 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: dalloverimex-P5.RC 606 |
| Copyright terms: Public domain | W3C validator |