PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dalloverimex-P5.RC

Theorem dalloverimex-P5.RC 606
Description: Inference Form of dalloverimex-P5 605.
Hypothesis
Ref Expression
dalloverimex-P5.RC.1 𝑥(𝜑 → (𝜓𝜒))
Assertion
Ref Expression
dalloverimex-P5.RC (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))

Proof of Theorem dalloverimex-P5.RC
StepHypRef Expression
1 dalloverimex-P5.RC.1 . . . 4 𝑥(𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → ∀𝑥(𝜑 → (𝜓𝜒)))
32dalloverimex-P5 605 . 2 (⊤ → (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒)))
43ndtruee-P3.18 183 1 (∀𝑥𝜑 → (∃𝑥𝜓 → ∃𝑥𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-true 153  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  dalloverimex-P5.RC.GEN  607
  Copyright terms: Public domain W3C validator