| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > alloverimex-P5.CL | |||
| Description: Closed Form of alloverimex-P5 601. |
| Ref | Expression |
|---|---|
| alloverimex-P5.CL | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM1of1 192 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)) | |
| 2 | 1 | alloverimex-P5 601 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 |
| This theorem is referenced by: qimeqallb-P6-L1 700 exi-P6 718 exipsub-P6 720 gennfrcl-L6 812 |
| Copyright terms: Public domain | W3C validator |