PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alloverimex-P5.CL

Theorem alloverimex-P5.CL 604
Description: Closed Form of alloverimex-P5 601.
Assertion
Ref Expression
alloverimex-P5.CL (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))

Proof of Theorem alloverimex-P5.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (∀𝑥(𝜑𝜓) → ∀𝑥(𝜑𝜓))
21alloverimex-P5 601 1 (∀𝑥(𝜑𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10  wff-exists 595
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596
This theorem is referenced by:  qimeqallb-P6-L1  700  exi-P6  718  exipsub-P6  720  gennfrcl-L6  812
  Copyright terms: Public domain W3C validator