| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > qimeqallb-P6-L1 | |||
| Description: Lemma for qimeqallb-P6 701. |
| Ref | Expression |
|---|---|
| qimeqallb-P6-L1.1 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| qimeqallb-P6-L1 | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alloverimex-P5.CL 604 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓)) | |
| 2 | qimeqallb-P6-L1.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | dfnfreealt-P6 683 | . . . 4 ⊢ (Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) | |
| 4 | 2, 3 | bimpf-P4.RC 532 | . . 3 ⊢ (∃𝑥𝜓 → ∀𝑥𝜓) |
| 5 | 4 | rcp-NDIMP0addall 207 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 6 | 1, 5 | syl-P3.24 259 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: qimeqallb-P6 701 |
| Copyright terms: Public domain | W3C validator |