PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfnfreealt-P6

Theorem dfnfreealt-P6 683
Description: Alternate Definition of Effective Non-Freeness.
Assertion
Ref Expression
dfnfreealt-P6 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))

Proof of Theorem dfnfreealt-P6
StepHypRef Expression
1 df-nfree-D6.1 682 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
2 allnegex-P5 597 . . 3 (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑)
32suborr-P3.43b.RC 349 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑))
4 orcomm-P3.37 319 . 2 ((∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
5 imasor-P4.32a 487 . . 3 ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑))
65bisym-P3.33b.RC 299 . 2 ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
71, 3, 4, 6tbitrns-P4.17.RC 431 1 (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  ¬ wff-neg 9  wff-imp 10  wff-bi 104  wff-or 144  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  nfrgenw-P6  684  gennfrw-P6  685  nfrim-P6  689  qimeqalla-P6-L1  698  qimeqallb-P6-L1  700  qremall-P6  722  qremex-P6  723  nfrgen-P6  733  gennfr-P6  734  subnfr-P6  755  nfrgencl-L6  811  gennfrcl-L6  812  nfrimd-P6  815  nfrnfr-P6  821  qremexd-P6  823
  Copyright terms: Public domain W3C validator