| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dfnfreealt-P6 | |||
| Description: Alternate Definition of Effective Non-Freeness. |
| Ref | Expression |
|---|---|
| dfnfreealt-P6 | ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfree-D6.1 682 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 2 | allnegex-P5 597 | . . 3 ⊢ (∀𝑥 ¬ 𝜑 ↔ ¬ ∃𝑥𝜑) | |
| 3 | 2 | suborr-P3.43b.RC 349 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑)) |
| 4 | orcomm-P3.37 319 | . 2 ⊢ ((∀𝑥𝜑 ∨ ¬ ∃𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)) | |
| 5 | imasor-P4.32a 487 | . . 3 ⊢ ((∃𝑥𝜑 → ∀𝑥𝜑) ↔ (¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑)) | |
| 6 | 5 | bisym-P3.33b.RC 299 | . 2 ⊢ ((¬ ∃𝑥𝜑 ∨ ∀𝑥𝜑) ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 7 | 1, 3, 4, 6 | tbitrns-P4.17.RC 431 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 ¬ wff-neg 9 → wff-imp 10 ↔ wff-bi 104 ∨ wff-or 144 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: nfrgenw-P6 684 gennfrw-P6 685 nfrim-P6 689 qimeqalla-P6-L1 698 qimeqallb-P6-L1 700 qremall-P6 722 qremex-P6 723 nfrgen-P6 733 gennfr-P6 734 subnfr-P6 755 nfrgencl-L6 811 gennfrcl-L6 812 nfrimd-P6 815 nfrnfr-P6 821 qremexd-P6 823 |
| Copyright terms: Public domain | W3C validator |