PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orcomm-P3.37

Theorem orcomm-P3.37 319
Description: '' Commutativity.
Assertion
Ref Expression
orcomm-P3.37 ((𝜑𝜓) ↔ (𝜓𝜑))

Proof of Theorem orcomm-P3.37
StepHypRef Expression
1 orcomm-P3.37-L1 318 . 2 ((𝜑𝜓) → (𝜓𝜑))
2 orcomm-P3.37-L1 318 . 2 ((𝜓𝜑) → (𝜑𝜓))
31, 2rcp-NDBII0 239 1 ((𝜑𝜓) ↔ (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  suborr-P3.43b  348  idorfalser-P4.20b  441  biasandor-P4.34a  491  orcomm2-P4  566  dfnfreealt-P6  683  nfrneg-P6  688  dfnfree-P7  968  dfnfreeint-P7  969
  Copyright terms: Public domain W3C validator