| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > orcomm-P3.37 | |||
| Description: '∨' Commutativity. † |
| Ref | Expression |
|---|---|
| orcomm-P3.37 | ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orcomm-P3.37-L1 318 | . 2 ⊢ ((𝜑 ∨ 𝜓) → (𝜓 ∨ 𝜑)) | |
| 2 | orcomm-P3.37-L1 318 | . 2 ⊢ ((𝜓 ∨ 𝜑) → (𝜑 ∨ 𝜓)) | |
| 3 | 1, 2 | rcp-NDBII0 239 | 1 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: suborr-P3.43b 348 idorfalser-P4.20b 441 biasandor-P4.34a 491 orcomm2-P4 566 dfnfreealt-P6 683 nfrneg-P6 688 dfnfree-P7 968 dfnfreeint-P7 969 |
| Copyright terms: Public domain | W3C validator |