PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  orcomm-P3.37-L1

Theorem orcomm-P3.37-L1 318
Description: Lemma for orcomm-P3.37 319.
Assertion
Ref Expression
orcomm-P3.37-L1 ((𝜑𝜓) → (𝜓𝜑))

Proof of Theorem orcomm-P3.37-L1
StepHypRef Expression
1 rcp-NDASM2of2 194 . . 3 (((𝜑𝜓) ∧ 𝜑) → 𝜑)
21ndoril-P3.10 175 . 2 (((𝜑𝜓) ∧ 𝜑) → (𝜓𝜑))
3 rcp-NDASM2of2 194 . . 3 (((𝜑𝜓) ∧ 𝜓) → 𝜓)
43ndorir-P3.11 176 . 2 (((𝜑𝜓) ∧ 𝜓) → (𝜓𝜑))
5 rcp-NDASM1of1 192 . 2 ((𝜑𝜓) → (𝜑𝜓))
62, 4, 5rcp-NDORE2 235 1 ((𝜑𝜓) → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  orcomm-P3.37  319
  Copyright terms: Public domain W3C validator