PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andassoc-P3.36

Theorem andassoc-P3.36 317
Description: '' Associativity.
Assertion
Ref Expression
andassoc-P3.36 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))

Proof of Theorem andassoc-P3.36
StepHypRef Expression
1 andassoc-P3.36-L1 315 . 2 (((𝜑𝜓) ∧ 𝜒) → (𝜑 ∧ (𝜓𝜒)))
2 andassoc-P3.36-L2 316 . 2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∧ 𝜒))
31, 2rcp-NDBII0 239 1 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andassoc2a-P4  568  andassoc2b-P4  570
  Copyright terms: Public domain W3C validator