PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andassoc2b-P4

Theorem andassoc2b-P4 570
Description: Alternate Form B of andassoc-P3.36 317.
Hypothesis
Ref Expression
andassoc2b-P4.1 (𝛾 → (𝜑 ∧ (𝜓𝜒)))
Assertion
Ref Expression
andassoc2b-P4 (𝛾 → ((𝜑𝜓) ∧ 𝜒))

Proof of Theorem andassoc2b-P4
StepHypRef Expression
1 andassoc2b-P4.1 . 2 (𝛾 → (𝜑 ∧ (𝜓𝜒)))
2 andassoc-P3.36 317 . . 3 (((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))
32bisym-P3.33b.RC 299 . 2 ((𝜑 ∧ (𝜓𝜒)) ↔ ((𝜑𝜓) ∧ 𝜒))
41, 3subimr2-P4.RC 543 1 (𝛾 → ((𝜑𝜓) ∧ 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andassoc2b-P4.RC  571
  Copyright terms: Public domain W3C validator