PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andassoc2a-P4.RC

Theorem andassoc2a-P4.RC 569
Description: Inference Form of andassoc2a-P4 568.
Hypothesis
Ref Expression
andassoc2a-P4.RC.1 ((𝜑𝜓) ∧ 𝜒)
Assertion
Ref Expression
andassoc2a-P4.RC (𝜑 ∧ (𝜓𝜒))

Proof of Theorem andassoc2a-P4.RC
StepHypRef Expression
1 andassoc2a-P4.RC.1 . . . 4 ((𝜑𝜓) ∧ 𝜒)
21ndtruei-P3.17 182 . . 3 (⊤ → ((𝜑𝜓) ∧ 𝜒))
32andassoc2a-P4 568 . 2 (⊤ → (𝜑 ∧ (𝜓𝜒)))
43ndtruee-P3.18 183 1 (𝜑 ∧ (𝜓𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator