PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  andassoc-P3.36-L2

Theorem andassoc-P3.36-L2 316
Description: Lemma for andassoc-P3.36 317.
Assertion
Ref Expression
andassoc-P3.36-L2 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∧ 𝜒))

Proof of Theorem andassoc-P3.36-L2
StepHypRef Expression
1 rcp-NDASM1of1 192 . . . 4 ((𝜑 ∧ (𝜓𝜒)) → (𝜑 ∧ (𝜓𝜒)))
21ndander-P3.9 174 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜑)
31ndandel-P3.8 173 . . . 4 ((𝜑 ∧ (𝜓𝜒)) → (𝜓𝜒))
43ndander-P3.9 174 . . 3 ((𝜑 ∧ (𝜓𝜒)) → 𝜓)
52, 4ndandi-P3.7 172 . 2 ((𝜑 ∧ (𝜓𝜒)) → (𝜑𝜓))
63ndandel-P3.8 173 . 2 ((𝜑 ∧ (𝜓𝜒)) → 𝜒)
75, 6ndandi-P3.7 172 1 ((𝜑 ∧ (𝜓𝜒)) → ((𝜑𝜓) ∧ 𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  andassoc-P3.36  317
  Copyright terms: Public domain W3C validator