PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndorir-P3.11

Theorem ndorir-P3.11 176
Description: Natural Deduction: Right '' Introduction Rule.

Deduce a new disjunction containing an arbitrary WFF to the right of a previously deduced WFF.

Hypothesis
Ref Expression
ndorir-P3.11.1 (𝛾𝜑)
Assertion
Ref Expression
ndorir-P3.11 (𝛾 → (𝜑𝜓))

Proof of Theorem ndorir-P3.11
StepHypRef Expression
1 ndorir-P3.11.1 . 2 (𝛾𝜑)
21orintr-P2.11b.AC.SH 149 1 (𝛾 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145
This theorem is referenced by:  rcp-NDORIR0  233  ndorir-P3.11.CL  246  orcomm-P3.37-L1  318  orassoc-P3.38-L1  320  orassoc-P3.38-L2  321  suborl-P3.43a-L1  345  orasim-P3.48-L2  360  norer-P4.2b  370  joinimandinc-P4.8a  397  joinimor-P4.8c  403  sepimorl-P4.9b  409  sepimorr-P4.9c  412  sepimandl-P4.9d  415  andoveror-P4.27-L1  459  andoveror-P4.27-L2  460  oroverand-P4.27-L3  462  oroverand-P4.27-L4  463  oroverim-P4.28-L2  466  imasor-P4.32-L1  485
  Copyright terms: Public domain W3C validator