PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORIR0

Theorem rcp-NDORIR0 233
Description: Right '' Introduction.
Hypothesis
Ref Expression
rcp-NDORIR0.1 𝜑
Assertion
Ref Expression
rcp-NDORIR0 (𝜑𝜓)

Proof of Theorem rcp-NDORIR0
StepHypRef Expression
1 rcp-NDORIR0.1 . . . 4 𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → 𝜑)
32ndorir-P3.11 176 . 2 (⊤ → (𝜑𝜓))
43ndtruee-P3.18 183 1 (𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator