| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDORE1 | |||
| Description: ∨ Elimination Recipe. † |
| Ref | Expression |
|---|---|
| rcp-NDORE1.1 | ⊢ (𝜑 → 𝜒) |
| rcp-NDORE1.2 | ⊢ (𝜓 → 𝜒) |
| rcp-NDORE1.3 | ⊢ (𝜑 ∨ 𝜓) |
| Ref | Expression |
|---|---|
| rcp-NDORE1 | ⊢ 𝜒 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((⊤ ∧ 𝜑) → 𝜑) | |
| 2 | rcp-NDORE1.1 | . . . . 5 ⊢ (𝜑 → 𝜒) | |
| 3 | 2 | rcp-NDIMP0addall 207 | . . . 4 ⊢ ((⊤ ∧ 𝜑) → (𝜑 → 𝜒)) |
| 4 | 1, 3 | ndime-P3.6 171 | . . 3 ⊢ ((⊤ ∧ 𝜑) → 𝜒) |
| 5 | rcp-NDASM2of2 194 | . . . 4 ⊢ ((⊤ ∧ 𝜓) → 𝜓) | |
| 6 | rcp-NDORE1.2 | . . . . 5 ⊢ (𝜓 → 𝜒) | |
| 7 | 6 | rcp-NDIMP0addall 207 | . . . 4 ⊢ ((⊤ ∧ 𝜓) → (𝜓 → 𝜒)) |
| 8 | 5, 7 | ndime-P3.6 171 | . . 3 ⊢ ((⊤ ∧ 𝜓) → 𝜒) |
| 9 | rcp-NDORE1.3 | . . . 4 ⊢ (𝜑 ∨ 𝜓) | |
| 10 | 9 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → (𝜑 ∨ 𝜓)) |
| 11 | 4, 8, 10 | ndore-P3.12 177 | . 2 ⊢ (⊤ → 𝜒) |
| 12 | 11 | ndtruee-P3.18 183 | 1 ⊢ 𝜒 |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 ⊤wff-true 153 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |