PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORE1

Theorem rcp-NDORE1 234
Description: Elimination Recipe.
Hypotheses
Ref Expression
rcp-NDORE1.1 (𝜑𝜒)
rcp-NDORE1.2 (𝜓𝜒)
rcp-NDORE1.3 (𝜑𝜓)
Assertion
Ref Expression
rcp-NDORE1 𝜒

Proof of Theorem rcp-NDORE1
StepHypRef Expression
1 rcp-NDASM2of2 194 . . . 4 ((⊤ ∧ 𝜑) → 𝜑)
2 rcp-NDORE1.1 . . . . 5 (𝜑𝜒)
32rcp-NDIMP0addall 207 . . . 4 ((⊤ ∧ 𝜑) → (𝜑𝜒))
41, 3ndime-P3.6 171 . . 3 ((⊤ ∧ 𝜑) → 𝜒)
5 rcp-NDASM2of2 194 . . . 4 ((⊤ ∧ 𝜓) → 𝜓)
6 rcp-NDORE1.2 . . . . 5 (𝜓𝜒)
76rcp-NDIMP0addall 207 . . . 4 ((⊤ ∧ 𝜓) → (𝜓𝜒))
85, 7ndime-P3.6 171 . . 3 ((⊤ ∧ 𝜓) → 𝜒)
9 rcp-NDORE1.3 . . . 4 (𝜑𝜓)
109ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
114, 8, 10ndore-P3.12 177 . 2 (⊤ → 𝜒)
1211ndtruee-P3.18 183 1 𝜒
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator