PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndore-P3.12

Theorem ndore-P3.12 177
Description: Natural Deduction: '' Elimination Rule.

If...

1.) after assuming '𝜑' we deduce '𝜒',

2.) after assuming '𝜓' we also deduce '𝜒', and

3.) we know that either '𝜑' or '𝜓' holds,

then we can deduce '𝜒' with the case assumptions, '𝜑' and '𝜓', discharged.

Hypotheses
Ref Expression
ndore-P3.12.1 ((𝛾𝜑) → 𝜒)
ndore-P3.12.2 ((𝛾𝜓) → 𝜒)
ndore-P3.12.3 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
ndore-P3.12 (𝛾𝜒)

Proof of Theorem ndore-P3.12
StepHypRef Expression
1 ndore-P3.12.1 . . 3 ((𝛾𝜑) → 𝜒)
21export-P2.10b.SH 143 . 2 (𝛾 → (𝜑𝜒))
3 ndore-P3.12.2 . . 3 ((𝛾𝜓) → 𝜒)
43export-P2.10b.SH 143 . 2 (𝛾 → (𝜓𝜒))
5 ndore-P3.12.3 . 2 (𝛾 → (𝜑𝜓))
62, 4, 5orelim-P2.11c.AC.3SH 151 1 (𝛾𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145
This theorem is referenced by:  rcp-NDORE1  234  rcp-NDORE2  235  rcp-NDORE3  236  rcp-NDORE4  237  rcp-NDORE5  238  dnege-P3.30  276
  Copyright terms: Public domain W3C validator