| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndore-P3.12 | |||
| Description: Natural Deduction: '∨' Elimination Rule.
If... 1.) after assuming '𝜑' we deduce '𝜒', 2.) after assuming '𝜓' we also deduce '𝜒', and 3.) we know that either '𝜑' or '𝜓' holds, then we can deduce '𝜒' with the case assumptions, '𝜑' and '𝜓', discharged. |
| Ref | Expression |
|---|---|
| ndore-P3.12.1 | ⊢ ((𝛾 ∧ 𝜑) → 𝜒) |
| ndore-P3.12.2 | ⊢ ((𝛾 ∧ 𝜓) → 𝜒) |
| ndore-P3.12.3 | ⊢ (𝛾 → (𝜑 ∨ 𝜓)) |
| Ref | Expression |
|---|---|
| ndore-P3.12 | ⊢ (𝛾 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndore-P3.12.1 | . . 3 ⊢ ((𝛾 ∧ 𝜑) → 𝜒) | |
| 2 | 1 | export-P2.10b.SH 143 | . 2 ⊢ (𝛾 → (𝜑 → 𝜒)) |
| 3 | ndore-P3.12.2 | . . 3 ⊢ ((𝛾 ∧ 𝜓) → 𝜒) | |
| 4 | 3 | export-P2.10b.SH 143 | . 2 ⊢ (𝛾 → (𝜓 → 𝜒)) |
| 5 | ndore-P3.12.3 | . 2 ⊢ (𝛾 → (𝜑 ∨ 𝜓)) | |
| 6 | 2, 4, 5 | orelim-P2.11c.AC.3SH 151 | 1 ⊢ (𝛾 → 𝜒) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∨ wff-or 144 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 |
| This theorem is referenced by: rcp-NDORE1 234 rcp-NDORE2 235 rcp-NDORE3 236 rcp-NDORE4 237 rcp-NDORE5 238 dnege-P3.30 276 |
| Copyright terms: Public domain | W3C validator |