PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDORE4

Theorem rcp-NDORE4 237
Description: Elimination Recipe.
Hypotheses
Ref Expression
rcp-NDORE4.1 ((𝛾₁𝛾₂𝛾₃𝜑) → 𝜒)
rcp-NDORE4.2 ((𝛾₁𝛾₂𝛾₃𝜓) → 𝜒)
rcp-NDORE4.3 ((𝛾₁𝛾₂𝛾₃) → (𝜑𝜓))
Assertion
Ref Expression
rcp-NDORE4 ((𝛾₁𝛾₂𝛾₃) → 𝜒)

Proof of Theorem rcp-NDORE4
StepHypRef Expression
1 rcp-NDORE4.1 . . 3 ((𝛾₁𝛾₂𝛾₃𝜑) → 𝜒)
21rcp-NDSEP4 187 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝜑) → 𝜒)
3 rcp-NDORE4.2 . . 3 ((𝛾₁𝛾₂𝛾₃𝜓) → 𝜒)
43rcp-NDSEP4 187 . 2 (((𝛾₁𝛾₂𝛾₃) ∧ 𝜓) → 𝜒)
5 rcp-NDORE4.3 . 2 ((𝛾₁𝛾₂𝛾₃) → (𝜑𝜓))
62, 4, 5ndore-P3.12 177 1 ((𝛾₁𝛾₂𝛾₃) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-rcp-AND4 163
This theorem is referenced by:  ndore-P3.12.CL  247  oroverand-P4.27-L4  463
  Copyright terms: Public domain W3C validator