PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndore-P3.12.CL

Theorem ndore-P3.12.CL 247
Description: Closed Form of ndore-P3.12 177.
Assertion
Ref Expression
ndore-P3.12.CL (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓)) → 𝜒)

Proof of Theorem ndore-P3.12.CL
StepHypRef Expression
1 rcp-NDASM4of4 201 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜑) → 𝜑)
2 rcp-NDASM1of4 198 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜑) → (𝜑𝜒))
31, 2ndime-P3.6 171 . 2 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜑) → 𝜒)
4 rcp-NDASM4of4 201 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜓) → 𝜓)
5 rcp-NDASM2of4 199 . . 3 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜓) → (𝜓𝜒))
64, 5ndime-P3.6 171 . 2 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓) ∧ 𝜓) → 𝜒)
7 rcp-NDASM3of3 197 . 2 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓)) → (𝜑𝜓))
83, 6, 7rcp-NDORE4 237 1 (((𝜑𝜒) ∧ (𝜓𝜒) ∧ (𝜑𝜓)) → 𝜒)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144  wff-rcp-AND3 160  wff-rcp-AND4 162
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-rcp-AND4 163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator