Proof of Theorem ndore-P3.12.CL
| Step | Hyp | Ref
| Expression |
| 1 | | rcp-NDASM4of4 201 |
. . 3
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜑) →
𝜑) |
| 2 | | rcp-NDASM1of4 198 |
. . 3
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜑) →
(𝜑 → 𝜒)) |
| 3 | 1, 2 | ndime-P3.6 171 |
. 2
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜑) →
𝜒) |
| 4 | | rcp-NDASM4of4 201 |
. . 3
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜓) →
𝜓) |
| 5 | | rcp-NDASM2of4 199 |
. . 3
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜓) →
(𝜓 → 𝜒)) |
| 6 | 4, 5 | ndime-P3.6 171 |
. 2
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓) ∧ 𝜓) →
𝜒) |
| 7 | | rcp-NDASM3of3 197 |
. 2
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓)) → (𝜑 ∨
𝜓)) |
| 8 | 3, 6, 7 | rcp-NDORE4 237 |
1
⊢ (((𝜑 → 𝜒) ∧
(𝜓 → 𝜒)
∧ (𝜑 ∨ 𝜓)) → 𝜒) |