PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndorir-P3.11.CL

Theorem ndorir-P3.11.CL 246
Description: Closed Form of ndorir-P3.11 176.
Assertion
Ref Expression
ndorir-P3.11.CL (𝜑 → (𝜑𝜓))

Proof of Theorem ndorir-P3.11.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (𝜑𝜑)
21ndorir-P3.11 176 1 (𝜑 → (𝜑𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-or 144
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155
This theorem is referenced by:  oroverim-P4.28-L1  465
  Copyright terms: Public domain W3C validator