| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > rcp-NDASM3of3 | |||
| Description: ( 1 ∧ 2 ∧ 3 ) → 3. † |
| Ref | Expression |
|---|---|
| rcp-NDASM3of3 | ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₃) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndasm-P3.1 166 | . 2 ⊢ (((𝛾₁ ∧ 𝛾₂) ∧ 𝛾₃) → 𝛾₃) | |
| 2 | 1 | rcp-NDJOIN3 189 | 1 ⊢ ((𝛾₁ ∧ 𝛾₂ ∧ 𝛾₃) → 𝛾₃) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ∧ wff-and 132 ∧ wff-rcp-AND3 160 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-rcp-AND3 161 |
| This theorem is referenced by: rcp-NDASM3of4 200 ndnegi-P3.3.CL 242 ndore-P3.12.CL 247 axL2-P3.22 254 imcomm-P3.27 265 trnsp-P3.31a 279 trnsp-P3.31b 282 trnsp-P3.31c 285 trnsp-P3.31d 288 export-P3.34b 307 example-E3.2b 312 orassoc-P3.38-L1 320 orassoc-P3.38-L2 321 suborl-P3.43a-L1 345 orasim-P3.48-L1 359 joinimandinc-P4.8a 397 joinimor-P4.8c 403 sepimorr-P4.9c 412 sepimandl-P4.9d 415 dmorgarev-L4.2 453 andoveror-P4.27-L1 459 oroverand-P4.27-L4 463 oroverim-P4.28-L2 466 qimeqex-P7-L2 1055 |
| Copyright terms: Public domain | W3C validator |