PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  rcp-NDASM3of3

Theorem rcp-NDASM3of3 197
Description: ( 1 2 3 ) 3.
Assertion
Ref Expression
rcp-NDASM3of3 ((𝛾₁𝛾₂𝛾₃) → 𝛾₃)

Proof of Theorem rcp-NDASM3of3
StepHypRef Expression
1 ndasm-P3.1 166 . 2 (((𝛾₁𝛾₂) ∧ 𝛾₃) → 𝛾₃)
21rcp-NDJOIN3 189 1 ((𝛾₁𝛾₂𝛾₃) → 𝛾₃)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-and 132  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  rcp-NDASM3of4  200  ndnegi-P3.3.CL  242  ndore-P3.12.CL  247  axL2-P3.22  254  imcomm-P3.27  265  trnsp-P3.31a  279  trnsp-P3.31b  282  trnsp-P3.31c  285  trnsp-P3.31d  288  export-P3.34b  307  example-E3.2b  312  orassoc-P3.38-L1  320  orassoc-P3.38-L2  321  suborl-P3.43a-L1  345  orasim-P3.48-L1  359  joinimandinc-P4.8a  397  joinimor-P4.8c  403  sepimorr-P4.9c  412  sepimandl-P4.9d  415  dmorgarev-L4.2  453  andoveror-P4.27-L1  459  oroverand-P4.27-L4  463  oroverim-P4.28-L2  466  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator