PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL2-P3.22

Theorem axL2-P3.22 254
Description: Re-derived Deductive Form of Axiom L2.
Hypothesis
Ref Expression
axL2-P3.22.1 (𝛾 → (𝜑 → (𝜓𝜒)))
Assertion
Ref Expression
axL2-P3.22 (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))

Proof of Theorem axL2-P3.22
StepHypRef Expression
1 rcp-NDASM3of3 197 . . . . 5 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → 𝜑)
2 rcp-NDASM2of3 196 . . . . 5 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → (𝜑𝜓))
31, 2ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → 𝜓)
4 axL2-P3.22.1 . . . . . 6 (𝛾 → (𝜑 → (𝜓𝜒)))
54rcp-NDIMP1add2 212 . . . . 5 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → (𝜑 → (𝜓𝜒)))
61, 5ndime-P3.6 171 . . . 4 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → (𝜓𝜒))
73, 6ndime-P3.6 171 . . 3 ((𝛾 ∧ (𝜑𝜓) ∧ 𝜑) → 𝜒)
87rcp-NDIMI3 225 . 2 ((𝛾 ∧ (𝜑𝜓)) → (𝜑𝜒))
98rcp-NDIMI2 224 1 (𝛾 → ((𝜑𝜓) → (𝜑𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-rcp-AND3 160
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-rcp-AND3 161
This theorem is referenced by:  axL2-P3.22.RC  255  axL2-P3.22.CL  256  psubim-P6-L1  789
  Copyright terms: Public domain W3C validator