PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL2-P3.22.RC

Theorem axL2-P3.22.RC 255
Description: Inference Form of axL2-P3.22 254.
Hypothesis
Ref Expression
axL2-P3.22.RC.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
axL2-P3.22.RC ((𝜑𝜓) → (𝜑𝜒))

Proof of Theorem axL2-P3.22.RC
StepHypRef Expression
1 axL2-P3.22.RC.1 . . . 4 (𝜑 → (𝜓𝜒))
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑 → (𝜓𝜒)))
32axL2-P3.22 254 . 2 (⊤ → ((𝜑𝜓) → (𝜑𝜒)))
43ndtruee-P3.18 183 1 ((𝜑𝜓) → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155  df-rcp-AND3 161
This theorem is referenced by:  dfpsubv-P7  977
  Copyright terms: Public domain W3C validator