PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfpsubv-P7

Theorem dfpsubv-P7 977
Description: dfpsubv-P6 717, Derived from Natural Deduction Rules (restriction on '𝑡').

This form can be used whenever '𝑥' does not occur in '𝑡'.

Assertion
Ref Expression
dfpsubv-P7 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Distinct variable group:   𝑡,𝑥

Proof of Theorem dfpsubv-P7
StepHypRef Expression
1 ndpsub3-P7.15 840 . . 3 𝑥[𝑡 / 𝑥]𝜑
2 ndpsub2-P7.14 839 . . . . 5 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
32ndbier-P3.15 180 . . . 4 (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))
43imcomm-P3.27.RC 266 . . 3 ([𝑡 / 𝑥]𝜑 → (𝑥 = 𝑡𝜑))
51, 4alli-P7 947 . 2 ([𝑡 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑡𝜑))
62ndbief-P3.14 179 . . . . 5 (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑))
76axL2-P3.22.RC 255 . . . 4 ((𝑥 = 𝑡𝜑) → (𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑))
87alloverim-P7.GENF.RC 972 . . 3 (∀𝑥(𝑥 = 𝑡𝜑) → ∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑))
91qimeqallb-P7 976 . . . . 5 (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) ↔ (∃𝑥 𝑥 = 𝑡 → ∀𝑥[𝑡 / 𝑥]𝜑))
109rcp-NDBIEF0 240 . . . 4 (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) → (∃𝑥 𝑥 = 𝑡 → ∀𝑥[𝑡 / 𝑥]𝜑))
11 axL6ex-P7 925 . . . 4 𝑥 𝑥 = 𝑡
1210, 11mae-P3.23.RC 258 . . 3 (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) → ∀𝑥[𝑡 / 𝑥]𝜑)
13 alle-P7.CL 942 . . 3 (∀𝑥[𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜑)
148, 12, 13dsyl-P3.25.RC 262 . 2 (∀𝑥(𝑥 = 𝑡𝜑) → [𝑡 / 𝑥]𝜑)
155, 14rcp-NDBII0 239 1 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡𝜑))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  dfpsub-P7  978  axL12-P7  982
  Copyright terms: Public domain W3C validator