Proof of Theorem dfpsubv-P7
| Step | Hyp | Ref
| Expression |
| 1 | | ndpsub3-P7.15 840 |
. . 3
⊢ Ⅎ𝑥[𝑡 / 𝑥]𝜑 |
| 2 | | ndpsub2-P7.14 839 |
. . . . 5
⊢ (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) |
| 3 | 2 | ndbier-P3.15 180 |
. . . 4
⊢ (𝑥 = 𝑡 →
([𝑡 / 𝑥]𝜑 → 𝜑)) |
| 4 | 3 | imcomm-P3.27.RC 266 |
. . 3
⊢ ([𝑡 / 𝑥]𝜑 → (𝑥 = 𝑡 → 𝜑)) |
| 5 | 1, 4 | alli-P7 947 |
. 2
⊢ ([𝑡 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑡 → 𝜑)) |
| 6 | 2 | ndbief-P3.14 179 |
. . . . 5
⊢ (𝑥 = 𝑡 → (𝜑 → [𝑡 / 𝑥]𝜑)) |
| 7 | 6 | axL2-P3.22.RC 255 |
. . . 4
⊢ ((𝑥 = 𝑡 → 𝜑) → (𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑)) |
| 8 | 7 | alloverim-P7.GENF.RC 972 |
. . 3
⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) →
∀𝑥(𝑥
= 𝑡 → [𝑡 /
𝑥]𝜑)) |
| 9 | 1 | qimeqallb-P7 976 |
. . . . 5
⊢ (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) ↔
(∃𝑥 𝑥
= 𝑡 → ∀𝑥[𝑡 / 𝑥]𝜑)) |
| 10 | 9 | rcp-NDBIEF0 240 |
. . . 4
⊢ (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) →
(∃𝑥 𝑥
= 𝑡 → ∀𝑥[𝑡 / 𝑥]𝜑)) |
| 11 | | axL6ex-P7 925 |
. . . 4
⊢ ∃𝑥 𝑥 = 𝑡 |
| 12 | 10, 11 | mae-P3.23.RC 258 |
. . 3
⊢ (∀𝑥(𝑥 = 𝑡 → [𝑡 / 𝑥]𝜑) →
∀𝑥[𝑡 /
𝑥]𝜑) |
| 13 | | alle-P7.CL 942 |
. . 3
⊢ (∀𝑥[𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜑) |
| 14 | 8, 12, 13 | dsyl-P3.25.RC 262 |
. 2
⊢ (∀𝑥(𝑥 = 𝑡 → 𝜑) →
[𝑡 / 𝑥]𝜑) |
| 15 | 5, 14 | rcp-NDBII0 239 |
1
⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑡 → 𝜑)) |