PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  dfpsub-P7

Theorem dfpsub-P7 978
Description: df-psub-D6.2 716, Derived from Natural Deduction Rules.
Assertion
Ref Expression
dfpsub-P7 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem dfpsub-P7
StepHypRef Expression
1 ndpsub4-P7.16 841 . 2 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
2 dfpsubv-P7 977 . 2 ([𝑡 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑))
3 dfpsubv-P7 977 . . . 4 ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦𝜑))
43subimr-P3.40b.RC 328 . . 3 ((𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
54suball-P7.RC 974 . 2 (∀𝑦(𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
61, 2, 5dbitrns-P4.16.RC 429 1 ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦𝜑)))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-forall 8  wff-imp 10  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator