| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > dfpsub-P7 | |||
| Description: df-psub-D6.2 716, Derived from Natural Deduction Rules. † |
| Ref | Expression |
|---|---|
| dfpsub-P7 | ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndpsub4-P7.16 841 | . 2 ⊢ ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑) | |
| 2 | dfpsubv-P7 977 | . 2 ⊢ ([𝑡 / 𝑦][𝑦 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑)) | |
| 3 | dfpsubv-P7 977 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | |
| 4 | 3 | subimr-P3.40b.RC 328 | . . 3 ⊢ ((𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑) ↔ (𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 5 | 4 | suball-P7.RC 974 | . 2 ⊢ (∀𝑦(𝑦 = 𝑡 → [𝑦 / 𝑥]𝜑) ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| 6 | 1, 2, 5 | dbitrns-P4.16.RC 429 | 1 ⊢ ([𝑡 / 𝑥]𝜑 ↔ ∀𝑦(𝑦 = 𝑡 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 ∀wff-forall 8 → wff-imp 10 ↔ wff-bi 104 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |