PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndpsub4-P7.16

Theorem ndpsub4-P7.16 841
Description: Natural Deduction: Proper Substitution Rule 4.

'𝑥' can occur in '𝑡', but '𝑦' cannot occur in either '𝜑' or '𝑡'.

Assertion
Ref Expression
ndpsub4-P7.16 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
Distinct variable groups:   𝜑,𝑦   𝑡,𝑦   𝑥,𝑦

Proof of Theorem ndpsub4-P7.16
StepHypRef Expression
1 psubcomp-P6 767 1 ([𝑡 / 𝑥]𝜑 ↔ [𝑡 / 𝑦][𝑦 / 𝑥]𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  psubid-P7  940  lemma-L7.02a  944  dfpsub-P7  978
  Copyright terms: Public domain W3C validator