PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  psubid-P7

Theorem psubid-P7 940
Description: Proper Substitution Identity Property.
Assertion
Ref Expression
psubid-P7 ([𝑥 / 𝑥]𝜑𝜑)

Proof of Theorem psubid-P7
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ndpsub4-P7.16 841 . 2 ([𝑥 / 𝑥]𝜑 ↔ [𝑥 / 𝑦][𝑦 / 𝑥]𝜑)
2 ndnfrv-P7.1 826 . . 3 𝑦𝜑
32psubinv-P7 939 . 2 ([𝑥 / 𝑦][𝑦 / 𝑥]𝜑𝜑)
41, 3bitrns-P3.33c.RC 303 1 ([𝑥 / 𝑥]𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-bi 104  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  alle-P7  941  exi-P7  951
  Copyright terms: Public domain W3C validator