PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  exi-P7

Theorem exi-P7 951
Description: Simplified '' Introduction Law.

For the original form, using explicit substitution, see ndalli-P7.17 842.

Hypothesis
Ref Expression
exi-P7.1 (𝛾𝜑)
Assertion
Ref Expression
exi-P7 (𝛾 → ∃𝑥𝜑)

Proof of Theorem exi-P7
StepHypRef Expression
1 exi-P7.1 . . 3 (𝛾𝜑)
2 psubid-P7 940 . . . 4 ([𝑥 / 𝑥]𝜑𝜑)
32bisym-P3.33b.RC 299 . . 3 (𝜑 ↔ [𝑥 / 𝑥]𝜑)
41, 3subimr2-P4.RC 543 . 2 (𝛾 → [𝑥 / 𝑥]𝜑)
54ndexi-P7.19 844 1 (𝛾 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  exi-P7.CL  952  exi-P7r  995  exi-P7r.RC  996  alleexi-P7  1004  qimeqex-P7-L1  1054  qimeqex-P7-L2  1055
  Copyright terms: Public domain W3C validator