PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexi-P7.19

Theorem ndexi-P7.19 844
Description: Natural Deduction: '' Introduction Rule.

In the traditional textbook presentation, '[𝑡 / 𝑥]𝜑' and '𝜑' are written as '𝜑(𝑡)' and '𝜑(𝑥)', respectively. The rule is then stated as...

'(𝛾𝜑(𝑡))(𝛾 → ∃𝑥𝜑(𝑥))'.

Within a proof, this rule is used to replace a specific constant or functional term with an abstract variable. The use of this rule is indicated by the phrase "therefore there exists".

Hypothesis
Ref Expression
ndexi-P7.19.1 (𝛾 → [𝑡 / 𝑥]𝜑)
Assertion
Ref Expression
ndexi-P7.19 (𝛾 → ∃𝑥𝜑)

Proof of Theorem ndexi-P7.19
StepHypRef Expression
1 ndexi-P7.19.1 . 2 (𝛾 → [𝑡 / 𝑥]𝜑)
2 exipsub-P6 720 . 2 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
31, 2syl-P3.24.RC 260 1 (𝛾 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-psub-D6.2 716
This theorem is referenced by:  ndexi-P7.19.RC  886  ndexi-P7.19.CL  910  exi-P7  951
  Copyright terms: Public domain W3C validator