PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexi-P7.19.CL

Theorem ndexi-P7.19.CL 910
Description: Closed Form of ndexi-P7.19 844.
Assertion
Ref Expression
ndexi-P7.19.CL ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)

Proof of Theorem ndexi-P7.19.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜑)
21ndexi-P7.19 844 1 ([𝑡 / 𝑥]𝜑 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-exists 595  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-psub-D6.2 716
This theorem is referenced by:  axL4ex-P7  946  cbvex-P7-L1  1065
  Copyright terms: Public domain W3C validator