| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > cbvex-P7-L1 | |||
| Description: Lemma for cbvex-P7 1066. † |
| Ref | Expression |
|---|---|
| cbvex-P7-L1.1 | ⊢ Ⅎ𝑥𝜓 |
| cbvex-P7-L1.2 | ⊢ Ⅎ𝑦𝜑 |
| cbvex-P7-L1.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex-P7-L1 | ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex-P7-L1.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | 1 | ndnfrex2-P7.10.RC 881 | . 2 ⊢ Ⅎ𝑦∃𝑥𝜑 |
| 3 | cbvex-P7-L1.1 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 4 | cbvex-P7-L1.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 5 | 3, 4 | ndpsub1-P7.13 838 | . . . 4 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) |
| 6 | 5 | rcp-NDBIER0 241 | . . 3 ⊢ (𝜓 → [𝑦 / 𝑥]𝜑) |
| 7 | ndexi-P7.19.CL 910 | . . 3 ⊢ ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑) | |
| 8 | 6, 7 | syl-P3.24.RC 260 | . 2 ⊢ (𝜓 → ∃𝑥𝜑) |
| 9 | 2, 8 | exia-P7.RC 954 | 1 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: cbvex-P7 1066 |
| Copyright terms: Public domain | W3C validator |