PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvex-P7-L1

Theorem cbvex-P7-L1 1065
Description: Lemma for cbvex-P7 1066.
Hypotheses
Ref Expression
cbvex-P7-L1.1 𝑥𝜓
cbvex-P7-L1.2 𝑦𝜑
cbvex-P7-L1.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex-P7-L1 (∃𝑦𝜓 → ∃𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvex-P7-L1
StepHypRef Expression
1 cbvex-P7-L1.2 . . 3 𝑦𝜑
21ndnfrex2-P7.10.RC 881 . 2 𝑦𝑥𝜑
3 cbvex-P7-L1.1 . . . . 5 𝑥𝜓
4 cbvex-P7-L1.3 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
53, 4ndpsub1-P7.13 838 . . . 4 ([𝑦 / 𝑥]𝜑𝜓)
65rcp-NDBIER0 241 . . 3 (𝜓 → [𝑦 / 𝑥]𝜑)
7 ndexi-P7.19.CL 910 . . 3 ([𝑦 / 𝑥]𝜑 → ∃𝑥𝜑)
86, 7syl-P3.24.RC 260 . 2 (𝜓 → ∃𝑥𝜑)
92, 8exia-P7.RC 954 1 (∃𝑦𝜓 → ∃𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  cbvex-P7  1066
  Copyright terms: Public domain W3C validator