| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > cbvex-P7 | |||
| Description: Change of Bound Variable Theorem for '∃𝑥'. † |
| Ref | Expression |
|---|---|
| cbvex-P7.1 | ⊢ Ⅎ𝑥𝜓 |
| cbvex-P7.2 | ⊢ Ⅎ𝑦𝜑 |
| cbvex-P7.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvex-P7 | ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvex-P7.2 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvex-P7.1 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvex-P7.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | bisym-P3.33b 298 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜑)) |
| 5 | eqsym-P7.CL.SYM 938 | . . . 4 ⊢ (𝑥 = 𝑦 ↔ 𝑦 = 𝑥) | |
| 6 | 4, 5 | subiml2-P4.RC 541 | . . 3 ⊢ (𝑦 = 𝑥 → (𝜓 ↔ 𝜑)) |
| 7 | 1, 2, 6 | cbvex-P7-L1 1065 | . 2 ⊢ (∃𝑥𝜑 → ∃𝑦𝜓) |
| 8 | 2, 1, 3 | cbvex-P7-L1 1065 | . 2 ⊢ (∃𝑦𝜓 → ∃𝑥𝜑) |
| 9 | 7, 8 | rcp-NDBII0 239 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ↔ wff-bi 104 ∃wff-exists 595 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: cbvex-P7.VR1of2 1067 cbvex-P7.VR2of2 1068 cbvex-P7.VR12of2 1069 cbvexpsub-P7 1072 |
| Copyright terms: Public domain | W3C validator |