PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  cbvex-P7

Theorem cbvex-P7 1066
Description: Change of Bound Variable Theorem for '𝑥'.
Hypotheses
Ref Expression
cbvex-P7.1 𝑥𝜓
cbvex-P7.2 𝑦𝜑
cbvex-P7.3 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvex-P7 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem cbvex-P7
StepHypRef Expression
1 cbvex-P7.2 . . 3 𝑦𝜑
2 cbvex-P7.1 . . 3 𝑥𝜓
3 cbvex-P7.3 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜓))
43bisym-P3.33b 298 . . . 4 (𝑥 = 𝑦 → (𝜓𝜑))
5 eqsym-P7.CL.SYM 938 . . . 4 (𝑥 = 𝑦𝑦 = 𝑥)
64, 5subiml2-P4.RC 541 . . 3 (𝑦 = 𝑥 → (𝜓𝜑))
71, 2, 6cbvex-P7-L1 1065 . 2 (∃𝑥𝜑 → ∃𝑦𝜓)
82, 1, 3cbvex-P7-L1 1065 . 2 (∃𝑦𝜓 → ∃𝑥𝜑)
97, 8rcp-NDBII0 239 1 (∃𝑥𝜑 ↔ ∃𝑦𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-bi 104  wff-exists 595  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  cbvex-P7.VR1of2  1067  cbvex-P7.VR2of2  1068  cbvex-P7.VR12of2  1069  cbvexpsub-P7  1072
  Copyright terms: Public domain W3C validator