PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bisym-P3.33b

Theorem bisym-P3.33b 298
Description: Equivalence Property: '' Symmetry.
Hypothesis
Ref Expression
bisym-P3.33b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
bisym-P3.33b (𝛾 → (𝜓𝜑))

Proof of Theorem bisym-P3.33b
StepHypRef Expression
1 bisym-P3.33b.1 . . 3 (𝛾 → (𝜑𝜓))
21ndbier-P3.15 180 . 2 (𝛾 → (𝜓𝜑))
31ndbief-P3.14 179 . 2 (𝛾 → (𝜑𝜓))
42, 3ndbii-P3.13 178 1 (𝛾 → (𝜓𝜑))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107
This theorem is referenced by:  bisym-P3.33b.RC  299  bisym-P3.33b.CL  300  subbil-P3.41a-L1  331  subbil-P3.41a  332  subandl-P3.42a  339  suborl-P3.43a  346  lemma-L5.04a  667  lemma-L7.03  962  cbvall-P7  1061  cbvex-P7  1066
  Copyright terms: Public domain W3C validator