| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bisym-P3.33b | |||
| Description: Equivalence Property: '↔' Symmetry. † |
| Ref | Expression |
|---|---|
| bisym-P3.33b.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bisym-P3.33b | ⊢ (𝛾 → (𝜓 ↔ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bisym-P3.33b.1 | . . 3 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbier-P3.15 180 | . 2 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 3 | 1 | ndbief-P3.14 179 | . 2 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 4 | 2, 3 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (𝜓 ↔ 𝜑)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 |
| This theorem is referenced by: bisym-P3.33b.RC 299 bisym-P3.33b.CL 300 subbil-P3.41a-L1 331 subbil-P3.41a 332 subandl-P3.42a 339 suborl-P3.43a 346 lemma-L5.04a 667 lemma-L7.03 962 cbvall-P7 1061 cbvex-P7 1066 |
| Copyright terms: Public domain | W3C validator |