PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbil-P3.41a

Theorem subbil-P3.41a 332
Description: Left Substitution Law for ''.
Hypothesis
Ref Expression
subbil-P3.41a.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subbil-P3.41a (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))

Proof of Theorem subbil-P3.41a
StepHypRef Expression
1 subbil-P3.41a.1 . . 3 (𝛾 → (𝜑𝜓))
21subbil-P3.41a-L1 331 . 2 (𝛾 → ((𝜑𝜒) → (𝜓𝜒)))
31bisym-P3.33b 298 . . 3 (𝛾 → (𝜓𝜑))
43subbil-P3.41a-L1 331 . 2 (𝛾 → ((𝜓𝜒) → (𝜑𝜒)))
52, 4ndbii-P3.13 178 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  subbil-P3.41a.RC  333  subbir-P3.41b  334  subbid-P3.41c  336  subbil2-P4  546
  Copyright terms: Public domain W3C validator