PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subbir-P3.41b

Theorem subbir-P3.41b 334
Description: Right Substitution Law for ''.
Hypothesis
Ref Expression
subbir-P3.41b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subbir-P3.41b (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem subbir-P3.41b
StepHypRef Expression
1 bisym-P3.33b.CL.SYM 301 . . . 4 ((𝜒𝜑) ↔ (𝜑𝜒))
21rcp-NDIMP0addall 207 . . 3 (𝛾 → ((𝜒𝜑) ↔ (𝜑𝜒)))
3 subbir-P3.41b.1 . . . 4 (𝛾 → (𝜑𝜓))
43subbil-P3.41a 332 . . 3 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
52, 4bitrns-P3.33c 302 . 2 (𝛾 → ((𝜒𝜑) ↔ (𝜓𝜒)))
6 bisym-P3.33b.CL.SYM 301 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
76rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜓𝜒) ↔ (𝜒𝜓)))
85, 7bitrns-P3.33c 302 1 (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subbir-P3.41b.RC  335  subbid-P3.41c  336  subbir2-P4  548  trnsvsubw-P6  710
  Copyright terms: Public domain W3C validator