| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subbir-P3.41b | |||
| Description: Right Substitution Law for '↔'. † |
| Ref | Expression |
|---|---|
| subbir-P3.41b.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| subbir-P3.41b | ⊢ (𝛾 → ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bisym-P3.33b.CL.SYM 301 | . . . 4 ⊢ ((𝜒 ↔ 𝜑) ↔ (𝜑 ↔ 𝜒)) | |
| 2 | 1 | rcp-NDIMP0addall 207 | . . 3 ⊢ (𝛾 → ((𝜒 ↔ 𝜑) ↔ (𝜑 ↔ 𝜒))) |
| 3 | subbir-P3.41b.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | subbil-P3.41a 332 | . . 3 ⊢ (𝛾 → ((𝜑 ↔ 𝜒) ↔ (𝜓 ↔ 𝜒))) |
| 5 | 2, 4 | bitrns-P3.33c 302 | . 2 ⊢ (𝛾 → ((𝜒 ↔ 𝜑) ↔ (𝜓 ↔ 𝜒))) |
| 6 | bisym-P3.33b.CL.SYM 301 | . . 3 ⊢ ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓)) | |
| 7 | 6 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ((𝜓 ↔ 𝜒) ↔ (𝜒 ↔ 𝜓))) |
| 8 | 5, 7 | bitrns-P3.33c 302 | 1 ⊢ (𝛾 → ((𝜒 ↔ 𝜑) ↔ (𝜒 ↔ 𝜓))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: subbir-P3.41b.RC 335 subbid-P3.41c 336 subbir2-P4 548 trnsvsubw-P6 710 |
| Copyright terms: Public domain | W3C validator |