| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > bitrns-P3.33c | |||
| Description: Equivalence Property: '↔' Transitivity. † |
| Ref | Expression |
|---|---|
| bitrns-P3.33c.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| bitrns-P3.33c.2 | ⊢ (𝛾 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| bitrns-P3.33c | ⊢ (𝛾 → (𝜑 ↔ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bitrns-P3.33c.1 | . . . 4 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜑 → 𝜓)) |
| 3 | bitrns-P3.33c.2 | . . . 4 ⊢ (𝛾 → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | ndbief-P3.14 179 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜒)) |
| 5 | 2, 4 | syl-P3.24 259 | . 2 ⊢ (𝛾 → (𝜑 → 𝜒)) |
| 6 | 3 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜒 → 𝜓)) |
| 7 | 1 | ndbier-P3.15 180 | . . 3 ⊢ (𝛾 → (𝜓 → 𝜑)) |
| 8 | 6, 7 | syl-P3.24 259 | . 2 ⊢ (𝛾 → (𝜒 → 𝜑)) |
| 9 | 5, 8 | ndbii-P3.13 178 | 1 ⊢ (𝛾 → (𝜑 ↔ 𝜒)) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 |
| This theorem is referenced by: bitrns-P3.33c.RC 303 bitrns-P3.33c.CL 304 subbil-P3.41a-L1 331 subbir-P3.41b 334 subbid-P3.41c 336 subandr-P3.42b 341 subandd-P3.42c 343 suborr-P3.43b 348 subord-P3.43c 350 dbitrns-P4.16 428 tbitrns-P4.17 430 subbir2-P4.RC 549 subeqd-P5 637 subelofd-P5 642 example-E6.01a 706 example-E6.02a 712 psubsuccv-P6-L1 805 psubaddv-P6-L1 807 psubmultv-P6-L1 809 ndsubeqd-P7 856 ndsubelofd-P7 857 psubinv-P7 939 |
| Copyright terms: Public domain | W3C validator |