PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  bitrns-P3.33c

Theorem bitrns-P3.33c 302
Description: Equivalence Property: '' Transitivity.
Hypotheses
Ref Expression
bitrns-P3.33c.1 (𝛾 → (𝜑𝜓))
bitrns-P3.33c.2 (𝛾 → (𝜓𝜒))
Assertion
Ref Expression
bitrns-P3.33c (𝛾 → (𝜑𝜒))

Proof of Theorem bitrns-P3.33c
StepHypRef Expression
1 bitrns-P3.33c.1 . . . 4 (𝛾 → (𝜑𝜓))
21ndbief-P3.14 179 . . 3 (𝛾 → (𝜑𝜓))
3 bitrns-P3.33c.2 . . . 4 (𝛾 → (𝜓𝜒))
43ndbief-P3.14 179 . . 3 (𝛾 → (𝜓𝜒))
52, 4syl-P3.24 259 . 2 (𝛾 → (𝜑𝜒))
63ndbier-P3.15 180 . . 3 (𝛾 → (𝜒𝜓))
71ndbier-P3.15 180 . . 3 (𝛾 → (𝜓𝜑))
86, 7syl-P3.24 259 . 2 (𝛾 → (𝜒𝜑))
95, 8ndbii-P3.13 178 1 (𝛾 → (𝜑𝜒))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133
This theorem is referenced by:  bitrns-P3.33c.RC  303  bitrns-P3.33c.CL  304  subbil-P3.41a-L1  331  subbir-P3.41b  334  subbid-P3.41c  336  subandr-P3.42b  341  subandd-P3.42c  343  suborr-P3.43b  348  subord-P3.43c  350  dbitrns-P4.16  428  tbitrns-P4.17  430  subbir2-P4.RC  549  subeqd-P5  637  subelofd-P5  642  example-E6.01a  706  example-E6.02a  712  psubsuccv-P6-L1  805  psubaddv-P6-L1  807  psubmultv-P6-L1  809  ndsubeqd-P7  856  ndsubelofd-P7  857  psubinv-P7  939
  Copyright terms: Public domain W3C validator