PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandd-P3.42c

Theorem subandd-P3.42c 343
Description: Dual Substitution Law for ''.
Hypotheses
Ref Expression
subandd-P3.42c.1 (𝛾 → (𝜑𝜓))
subandd-P3.42c.2 (𝛾 → (𝜒𝜗))
Assertion
Ref Expression
subandd-P3.42c (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))

Proof of Theorem subandd-P3.42c
StepHypRef Expression
1 subandd-P3.42c.1 . . 3 (𝛾 → (𝜑𝜓))
21subandl-P3.42a 339 . 2 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
3 subandd-P3.42c.2 . . 3 (𝛾 → (𝜒𝜗))
43subandr-P3.42b 341 . 2 (𝛾 → ((𝜓𝜒) ↔ (𝜓𝜗)))
52, 4bitrns-P3.33c 302 1 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜗)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subandd-P3.42c.RC  344  subandd2-P4  556
  Copyright terms: Public domain W3C validator