| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > subandd-P3.42c | |||
| Description: Dual Substitution Law for '∧'. † |
| Ref | Expression |
|---|---|
| subandd-P3.42c.1 | ⊢ (𝛾 → (𝜑 ↔ 𝜓)) |
| subandd-P3.42c.2 | ⊢ (𝛾 → (𝜒 ↔ 𝜗)) |
| Ref | Expression |
|---|---|
| subandd-P3.42c | ⊢ (𝛾 → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subandd-P3.42c.1 | . . 3 ⊢ (𝛾 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | subandl-P3.42a 339 | . 2 ⊢ (𝛾 → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜒))) |
| 3 | subandd-P3.42c.2 | . . 3 ⊢ (𝛾 → (𝜒 ↔ 𝜗)) | |
| 4 | 3 | subandr-P3.42b 341 | . 2 ⊢ (𝛾 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗))) |
| 5 | 2, 4 | bitrns-P3.33c 302 | 1 ⊢ (𝛾 → ((𝜑 ∧ 𝜒) ↔ (𝜓 ∧ 𝜗))) |
| Colors of variables: wff objvar term class |
| Syntax hints: → wff-imp 10 ↔ wff-bi 104 ∧ wff-and 132 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-true-D2.4 155 |
| This theorem is referenced by: subandd-P3.42c.RC 344 subandd2-P4 556 |
| Copyright terms: Public domain | W3C validator |