PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandr-P3.42b

Theorem subandr-P3.42b 341
Description: Right Substitution Law for ''.
Hypothesis
Ref Expression
subandr-P3.42b.1 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
subandr-P3.42b (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))

Proof of Theorem subandr-P3.42b
StepHypRef Expression
1 andcomm-P3.35 314 . . . 4 ((𝜒𝜑) ↔ (𝜑𝜒))
21rcp-NDIMP0addall 207 . . 3 (𝛾 → ((𝜒𝜑) ↔ (𝜑𝜒)))
3 subandr-P3.42b.1 . . . 4 (𝛾 → (𝜑𝜓))
43subandl-P3.42a 339 . . 3 (𝛾 → ((𝜑𝜒) ↔ (𝜓𝜒)))
52, 4bitrns-P3.33c 302 . 2 (𝛾 → ((𝜒𝜑) ↔ (𝜓𝜒)))
6 andcomm-P3.35 314 . . 3 ((𝜓𝜒) ↔ (𝜒𝜓))
76rcp-NDIMP0addall 207 . 2 (𝛾 → ((𝜓𝜒) ↔ (𝜒𝜓)))
85, 7bitrns-P3.33c 302 1 (𝛾 → ((𝜒𝜑) ↔ (𝜒𝜓)))
Colors of variables: wff objvar term class
Syntax hints:  wff-imp 10  wff-bi 104  wff-and 132
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  subandr-P3.42b.RC  342  subandd-P3.42c  343  subandr2-P4  554
  Copyright terms: Public domain W3C validator