PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  subandr-P3.42b.RC

Theorem subandr-P3.42b.RC 342
Description: Inference Form of subandr-P3.42b 341.
Hypothesis
Ref Expression
subandr-P3.42b.RC.1 (𝜑𝜓)
Assertion
Ref Expression
subandr-P3.42b.RC ((𝜒𝜑) ↔ (𝜒𝜓))

Proof of Theorem subandr-P3.42b.RC
StepHypRef Expression
1 subandr-P3.42b.RC.1 . . . 4 (𝜑𝜓)
21ndtruei-P3.17 182 . . 3 (⊤ → (𝜑𝜓))
32subandr-P3.42b 341 . 2 (⊤ → ((𝜒𝜑) ↔ (𝜒𝜓)))
43ndtruee-P3.18 183 1 ((𝜒𝜑) ↔ (𝜒𝜓))
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-and 132  wff-true 153
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-true-D2.4 155
This theorem is referenced by:  idandthmr-P4.23b  447  lemma-L7.02a-L1  943
  Copyright terms: Public domain W3C validator