| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > lemma-L7.02a-L1 | |||
| Description: Lemma for lemma-L7.02a 944. † |
| Ref | Expression |
|---|---|
| lemma-L7.02a-L1.1 | ⊢ Ⅎ𝑥𝛾 |
| lemma-L7.02a-L1.2 | ⊢ (𝛾 → (𝜑 → 𝜓)) |
| Ref | Expression |
|---|---|
| lemma-L7.02a-L1 | ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lemma-L7.02a-L1.1 | . 2 ⊢ Ⅎ𝑥𝛾 | |
| 2 | ndpsub3-P7.15 840 | . . 3 ⊢ Ⅎ𝑥[𝑡 / 𝑥]𝜑 | |
| 3 | ndpsub3-P7.15 840 | . . 3 ⊢ Ⅎ𝑥[𝑡 / 𝑥]𝜓 | |
| 4 | 2, 3 | ndnfrim-P7.3.RC 876 | . 2 ⊢ Ⅎ𝑥([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓) |
| 5 | ndpsub2-P7.14 839 | . . . . . . . 8 ⊢ (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑)) | |
| 6 | 5 | ndbier-P3.15 180 | . . . . . . 7 ⊢ (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑)) |
| 7 | 6 | rcp-NDIMP0addall 207 | . . . . . 6 ⊢ (𝛾 → (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑 → 𝜑))) |
| 8 | 7 | import-P3.34a.RC 306 | . . . . 5 ⊢ ((𝛾 ∧ 𝑥 = 𝑡) → ([𝑡 / 𝑥]𝜑 → 𝜑)) |
| 9 | lemma-L7.02a-L1.2 | . . . . . 6 ⊢ (𝛾 → (𝜑 → 𝜓)) | |
| 10 | 9 | rcp-NDIMP1add1 208 | . . . . 5 ⊢ ((𝛾 ∧ 𝑥 = 𝑡) → (𝜑 → 𝜓)) |
| 11 | ndpsub2-P7.14 839 | . . . . . . . 8 ⊢ (𝑥 = 𝑡 → (𝜓 ↔ [𝑡 / 𝑥]𝜓)) | |
| 12 | 11 | ndbief-P3.14 179 | . . . . . . 7 ⊢ (𝑥 = 𝑡 → (𝜓 → [𝑡 / 𝑥]𝜓)) |
| 13 | 12 | rcp-NDIMP0addall 207 | . . . . . 6 ⊢ (𝛾 → (𝑥 = 𝑡 → (𝜓 → [𝑡 / 𝑥]𝜓))) |
| 14 | 13 | import-P3.34a.RC 306 | . . . . 5 ⊢ ((𝛾 ∧ 𝑥 = 𝑡) → (𝜓 → [𝑡 / 𝑥]𝜓)) |
| 15 | 8, 10, 14 | dsyl-P3.25 261 | . . . 4 ⊢ ((𝛾 ∧ 𝑥 = 𝑡) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| 16 | lemma-L7.01a 924 | . . . . . 6 ⊢ ([𝑥 / 𝑦] 𝑦 = 𝑡 ↔ 𝑥 = 𝑡) | |
| 17 | 16 | bisym-P3.33b.RC 299 | . . . . 5 ⊢ (𝑥 = 𝑡 ↔ [𝑥 / 𝑦] 𝑦 = 𝑡) |
| 18 | 17 | subandr-P3.42b.RC 342 | . . . 4 ⊢ ((𝛾 ∧ 𝑥 = 𝑡) ↔ (𝛾 ∧ [𝑥 / 𝑦] 𝑦 = 𝑡)) |
| 19 | 15, 18 | subiml2-P4.RC 541 | . . 3 ⊢ ((𝛾 ∧ [𝑥 / 𝑦] 𝑦 = 𝑡) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| 20 | 19 | rcp-NDIMI2 224 | . 2 ⊢ (𝛾 → ([𝑥 / 𝑦] 𝑦 = 𝑡 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))) |
| 21 | axL6ex-P7 925 | . . 3 ⊢ ∃𝑦 𝑦 = 𝑡 | |
| 22 | 21 | rcp-NDIMP0addall 207 | . 2 ⊢ (𝛾 → ∃𝑦 𝑦 = 𝑡) |
| 23 | 1, 4, 20, 22 | ndexew-P7.VR2of3 869 | 1 ⊢ (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)) |
| Colors of variables: wff objvar term class |
| Syntax hints: term-obj 1 = wff-equals 6 → wff-imp 10 ∧ wff-and 132 ∃wff-exists 595 Ⅎwff-nfree 681 [wff-psub 714 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: lemma-L7.02a 944 |
| Copyright terms: Public domain | W3C validator |