PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  lemma-L7.02a-L1

Theorem lemma-L7.02a-L1 943
Description: Lemma for lemma-L7.02a 944.
Hypotheses
Ref Expression
lemma-L7.02a-L1.1 𝑥𝛾
lemma-L7.02a-L1.2 (𝛾 → (𝜑𝜓))
Assertion
Ref Expression
lemma-L7.02a-L1 (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Distinct variable group:   𝑡,𝑥

Proof of Theorem lemma-L7.02a-L1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 lemma-L7.02a-L1.1 . 2 𝑥𝛾
2 ndpsub3-P7.15 840 . . 3 𝑥[𝑡 / 𝑥]𝜑
3 ndpsub3-P7.15 840 . . 3 𝑥[𝑡 / 𝑥]𝜓
42, 3ndnfrim-P7.3.RC 876 . 2 𝑥([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)
5 ndpsub2-P7.14 839 . . . . . . . 8 (𝑥 = 𝑡 → (𝜑 ↔ [𝑡 / 𝑥]𝜑))
65ndbier-P3.15 180 . . . . . . 7 (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑))
76rcp-NDIMP0addall 207 . . . . . 6 (𝛾 → (𝑥 = 𝑡 → ([𝑡 / 𝑥]𝜑𝜑)))
87import-P3.34a.RC 306 . . . . 5 ((𝛾𝑥 = 𝑡) → ([𝑡 / 𝑥]𝜑𝜑))
9 lemma-L7.02a-L1.2 . . . . . 6 (𝛾 → (𝜑𝜓))
109rcp-NDIMP1add1 208 . . . . 5 ((𝛾𝑥 = 𝑡) → (𝜑𝜓))
11 ndpsub2-P7.14 839 . . . . . . . 8 (𝑥 = 𝑡 → (𝜓 ↔ [𝑡 / 𝑥]𝜓))
1211ndbief-P3.14 179 . . . . . . 7 (𝑥 = 𝑡 → (𝜓 → [𝑡 / 𝑥]𝜓))
1312rcp-NDIMP0addall 207 . . . . . 6 (𝛾 → (𝑥 = 𝑡 → (𝜓 → [𝑡 / 𝑥]𝜓)))
1413import-P3.34a.RC 306 . . . . 5 ((𝛾𝑥 = 𝑡) → (𝜓 → [𝑡 / 𝑥]𝜓))
158, 10, 14dsyl-P3.25 261 . . . 4 ((𝛾𝑥 = 𝑡) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
16 lemma-L7.01a 924 . . . . . 6 ([𝑥 / 𝑦] 𝑦 = 𝑡𝑥 = 𝑡)
1716bisym-P3.33b.RC 299 . . . . 5 (𝑥 = 𝑡 ↔ [𝑥 / 𝑦] 𝑦 = 𝑡)
1817subandr-P3.42b.RC 342 . . . 4 ((𝛾𝑥 = 𝑡) ↔ (𝛾 ∧ [𝑥 / 𝑦] 𝑦 = 𝑡))
1915, 18subiml2-P4.RC 541 . . 3 ((𝛾 ∧ [𝑥 / 𝑦] 𝑦 = 𝑡) → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
2019rcp-NDIMI2 224 . 2 (𝛾 → ([𝑥 / 𝑦] 𝑦 = 𝑡 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓)))
21 axL6ex-P7 925 . . 3 𝑦 𝑦 = 𝑡
2221rcp-NDIMP0addall 207 . 2 (𝛾 → ∃𝑦 𝑦 = 𝑡)
231, 4, 20, 22ndexew-P7.VR2of3 869 1 (𝛾 → ([𝑡 / 𝑥]𝜑 → [𝑡 / 𝑥]𝜓))
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1   = wff-equals 6  wff-imp 10  wff-and 132  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  lemma-L7.02a  944
  Copyright terms: Public domain W3C validator