PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexew-P7.VR2of3

Theorem ndexew-P7.VR2of3 869
Description: ndexew-P7 867 with one variable restriction.

'𝑦' cannot occur in '𝜑'.

Hypotheses
Ref Expression
ndexew-P7.VR2of3.1 𝑦𝛾
ndexew-P7.VR2of3.3 𝑦𝜓
ndexew-P7.VR2of3.4 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
ndexew-P7.VR2of3.5 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
ndexew-P7.VR2of3 (𝛾𝜓)
Distinct variable groups:   𝜑,𝑦   𝑥,𝑦

Proof of Theorem ndexew-P7.VR2of3
StepHypRef Expression
1 ndexew-P7.VR2of3.1 . 2 𝑦𝛾
2 ndnfrv-P7.1 826 . 2 𝑦𝜑
3 ndexew-P7.VR2of3.3 . 2 𝑦𝜓
4 ndexew-P7.VR2of3.4 . 2 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
5 ndexew-P7.VR2of3.5 . 2 (𝛾 → ∃𝑥𝜑)
61, 2, 3, 4, 5ndexew-P7 867 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  lemma-L7.02a-L1  943
  Copyright terms: Public domain W3C validator