PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndexew-P7

Theorem ndexew-P7 867
Description: ndexe-P7.20 845 with '𝑦' ENF in '𝜓'.

In the original '' Elimination Law, '𝑦' need only be *conditionally* ENF, i.e. '(𝛾 → Ⅎ𝑦𝜓)'.

Hypotheses
Ref Expression
ndexew-P7.1 𝑦𝛾
ndexew-P7.2 𝑦𝜑
ndexew-P7.3 𝑦𝜓
ndexew-P7.4 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
ndexew-P7.5 (𝛾 → ∃𝑥𝜑)
Assertion
Ref Expression
ndexew-P7 (𝛾𝜓)
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndexew-P7
StepHypRef Expression
1 ndexew-P7.1 . 2 𝑦𝛾
2 ndexew-P7.2 . 2 𝑦𝜑
3 ndexew-P7.3 . . 3 𝑦𝜓
43rcp-NDIMP0addall 207 . 2 (𝛾 → Ⅎ𝑦𝜓)
5 ndexew-P7.4 . 2 (𝛾 → ([𝑦 / 𝑥]𝜑𝜓))
6 ndexew-P7.5 . 2 (𝛾 → ∃𝑥𝜑)
71, 2, 4, 5, 6ndexe-P7.20 845 1 (𝛾𝜓)
Colors of variables: wff objvar term class
Syntax hints:  term-obj 1  wff-imp 10  wff-exists 595  wff-nfree 681  [wff-psub 714
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  ndexew-P7.VR1of3  868  ndexew-P7.VR2of3  869  ndexew-P7.VR3of3  870  ndexew-P7.VR12of3  871  ndexew-P7.VR13of3  872  ndexew-P7.VR23of3  873  ndexew-P7.VR123of3  874
  Copyright terms: Public domain W3C validator