PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  alle-P7.CL

Theorem alle-P7.CL 942
Description: Closed Form of alle-P7 941.
Assertion
Ref Expression
alle-P7.CL (∀𝑥𝜑𝜑)

Proof of Theorem alle-P7.CL
StepHypRef Expression
1 rcp-NDASM1of1 192 . 2 (∀𝑥𝜑 → ∀𝑥𝜑)
21alle-P7 941 1 (∀𝑥𝜑𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  axL4-P7  945  axL4ex-P7  946  allnegex-P7-L1  956  gennfrcl-P7  963  qimeqallhalf-P7  975  dfpsubv-P7  977  axL11-P7  980  alle-P7r.CL  994  gennfr-P8  1079  idempotall-P8  1093  idempotallex-P8  1095  idempotallnall-P8  1097  idempotallnex-P8  1099  qremall-P8  1101
  Copyright terms: Public domain W3C validator