| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > axL11-P7 | |||
| Description: ax-L11 28 Derived from Natural Deduction Rules. † |
| Ref | Expression |
|---|---|
| axL11-P7 | ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrall1-P7.7 832 | . . 3 ⊢ Ⅎ𝑦∀𝑦𝜑 | |
| 2 | 1 | ndnfrall2-P7.9.RC 880 | . 2 ⊢ Ⅎ𝑦∀𝑥∀𝑦𝜑 |
| 3 | alle-P7.CL 942 | . . 3 ⊢ (∀𝑦𝜑 → 𝜑) | |
| 4 | 3 | alloverim-P7.GENF.RC 972 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑥𝜑) |
| 5 | 2, 4 | alli-P7 947 | 1 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff objvar term class |
| Syntax hints: ∀wff-forall 8 → wff-imp 10 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 ax-L5 17 ax-L6 18 ax-L7 19 ax-L10 27 ax-L11 28 ax-L12 29 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 df-psub-D6.2 716 |
| This theorem is referenced by: allcomm-P7 1058 |
| Copyright terms: Public domain | W3C validator |