PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  axL11-P7

Theorem axL11-P7 980
Description: ax-L11 28 Derived from Natural Deduction Rules.
Assertion
Ref Expression
axL11-P7 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem axL11-P7
StepHypRef Expression
1 ndnfrall1-P7.7 832 . . 3 𝑦𝑦𝜑
21ndnfrall2-P7.9.RC 880 . 2 𝑦𝑥𝑦𝜑
3 alle-P7.CL 942 . . 3 (∀𝑦𝜑𝜑)
43alloverim-P7.GENF.RC 972 . 2 (∀𝑥𝑦𝜑 → ∀𝑥𝜑)
52, 4alli-P7 947 1 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-imp 10
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  allcomm-P7  1058
  Copyright terms: Public domain W3C validator