PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  allcomm-P7

Theorem allcomm-P7 1058
Description: Universal Quantifier Commutivity.
Assertion
Ref Expression
allcomm-P7 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Distinct variable group:   𝑥,𝑦

Proof of Theorem allcomm-P7
StepHypRef Expression
1 axL11-P7 980 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
2 axL11-P7 980 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
31, 2rcp-NDBII0 239 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-bi 104
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682  df-psub-D6.2 716
This theorem is referenced by:  example-E7.1b  1075
  Copyright terms: Public domain W3C validator