PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrall2-P7.9.RC

Theorem ndnfrall2-P7.9.RC 880
Description: Inference Form of ndnfrall2-P7.9 834.
Hypothesis
Ref Expression
ndnfrall2-P7.9.RC.1 𝑥𝜑
Assertion
Ref Expression
ndnfrall2-P7.9.RC 𝑥𝑦𝜑
Distinct variable group:   𝑥,𝑦

Proof of Theorem ndnfrall2-P7.9.RC
StepHypRef Expression
1 ndnfrall2-P7.9.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜑)
32ndnfrall2-P7.9.VR12of2 860 . 2 (⊤ → Ⅎ𝑥𝑦𝜑)
43ndtruee-P3.18 183 1 𝑥𝑦𝜑
Colors of variables: wff objvar term class
Syntax hints:  wff-forall 8  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16  ax-L5 17  ax-L6 18  ax-L7 19  ax-L10 27  ax-L11 28  ax-L12 29
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  axL11-P7  980  cbvall-P7-L1  1060
  Copyright terms: Public domain W3C validator