PE Home bfol.mm Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  PE Home  >  Th. List  >  ndnfrbi-P7.6.RC

Theorem ndnfrbi-P7.6.RC 879
Description: Inference Form of ndnfrbi-P7.6 831.
Hypotheses
Ref Expression
ndnfrbi-P7.6.RC.1 𝑥𝜑
ndnfrbi-P7.6.RC.2 𝑥𝜓
Assertion
Ref Expression
ndnfrbi-P7.6.RC 𝑥(𝜑𝜓)

Proof of Theorem ndnfrbi-P7.6.RC
StepHypRef Expression
1 ndnfrbi-P7.6.RC.1 . . . 4 𝑥𝜑
21ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜑)
3 ndnfrbi-P7.6.RC.2 . . . 4 𝑥𝜓
43ndtruei-P3.17 182 . . 3 (⊤ → Ⅎ𝑥𝜓)
52, 4ndnfrbi-P7.6 831 . 2 (⊤ → Ⅎ𝑥(𝜑𝜓))
65ndtruee-P3.18 183 1 𝑥(𝜑𝜓)
Colors of variables: wff objvar term class
Syntax hints:  wff-bi 104  wff-true 153  wff-nfree 681
This theorem was proved from axioms:  ax-L1 11  ax-L2 12  ax-L3 13  ax-MP 14  ax-GEN 15  ax-L4 16
This theorem depends on definitions:  df-bi-D2.1 107  df-and-D2.2 133  df-or-D2.3 145  df-true-D2.4 155  df-rcp-AND3 161  df-exists-D5.1 596  df-nfree-D6.1 682
This theorem is referenced by:  psubnfrv-P7  927  psubinv-P7  939
  Copyright terms: Public domain W3C validator