| bfol.mm Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > PE Home > Th. List > ndnfrbi-P7.6.RC | |||
| Description: Inference Form of ndnfrbi-P7.6 831. |
| Ref | Expression |
|---|---|
| ndnfrbi-P7.6.RC.1 | ⊢ Ⅎ𝑥𝜑 |
| ndnfrbi-P7.6.RC.2 | ⊢ Ⅎ𝑥𝜓 |
| Ref | Expression |
|---|---|
| ndnfrbi-P7.6.RC | ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndnfrbi-P7.6.RC.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜑) |
| 3 | ndnfrbi-P7.6.RC.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 3 | ndtruei-P3.17 182 | . . 3 ⊢ (⊤ → Ⅎ𝑥𝜓) |
| 5 | 2, 4 | ndnfrbi-P7.6 831 | . 2 ⊢ (⊤ → Ⅎ𝑥(𝜑 ↔ 𝜓)) |
| 6 | 5 | ndtruee-P3.18 183 | 1 ⊢ Ⅎ𝑥(𝜑 ↔ 𝜓) |
| Colors of variables: wff objvar term class |
| Syntax hints: ↔ wff-bi 104 ⊤wff-true 153 Ⅎwff-nfree 681 |
| This theorem was proved from axioms: ax-L1 11 ax-L2 12 ax-L3 13 ax-MP 14 ax-GEN 15 ax-L4 16 |
| This theorem depends on definitions: df-bi-D2.1 107 df-and-D2.2 133 df-or-D2.3 145 df-true-D2.4 155 df-rcp-AND3 161 df-exists-D5.1 596 df-nfree-D6.1 682 |
| This theorem is referenced by: psubnfrv-P7 927 psubinv-P7 939 |
| Copyright terms: Public domain | W3C validator |